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ABSTRACT

, This paper evaluates five maneuvering strategies for an
evader in a two dimensional continuous evasive game. An
evader's-movement, in two dimensions at constant speed, is
simulated by choosing ccurses that are independent and dis-
tributed according to one of the five course change rules.
The times between course changes are independent exponential
random variables, 2aAn improvement over a previously estab-
lished least upper bound on evader survivability is pre~
gsented. The bulk of this paper is the presentation of

evader survivability as a result of the maneuvering strategy

he employs.
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I. INTRODUCTION

A classic military problem with current application is:
how to maneuver a mobile target in order to prevent success~
ful prediction of its position. For example how should ¢
"aircraft carrier maneuver to maximize its survivability
-against -an ICBM attack?

Of primary importance to this problem is the time lag
between the decision to fire at a target, made at time t,
and the warhead detonation at time t+TL. This lag is called
time~late and denoted as TL. The decision to initiate such
én action is based in part upon knowing the target's posi-
tion at time t while the effectiveness of that action is

dependent upon the error in predicting that position at t+7TL.

A. ICBM VERSUS AIRCRAFT CARRIER

Consider the ICMB versus aircraft carrier problem. As-
sume that the carrier operates in mid-ocean, possesses great
endurance, can make sharp turns and has as its only kinermatic
restriction a constant speed, v. The carrier is referred to
as the evader, E. The attacker, P, continuously observes E
from a nearby unarmed trawler, P's weapon is a land based
ICBM which has perfect accuracy, produces a lethal area A

(this lethal area can have any shape) but does not have a

mid-course guidance nor homing capability. Although P knows
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E's position past and present, he also knows that his ICBM
will have a one hour time-late.l

P's problem is to predict E's position at time t+TL in
order to initiate an attack at time t. E's problem, since
he will not know of an attack until he observes the deto-
nation, is to maneuver in such a way to confound P's predic-

tion.2 E's movement should be random because any nonrandom

movement would be vulnerable to extrapolation.

B. AN UPPER BOUND ON EVADER SURVIVABILIWTY

A lower bound on P's success, Py and consequently an
upper bound on E's surxvivability, l-py, is known, P knows
E's position at t+TL will be interior to or on a circle of
radius veTL centered on E's position at t (which is known).
The enemy can then gaurantee a kill probability of at least
A/n’(v'TL)2 by choosing a lethal area randomly within the
circle of uncertainty (a wedge of random orientation will
do) [Ref. 4]. Then the maximum survivability E could attain
would be l-A/n(v-TL)z.

This upper bound on E's survivability is a function only
of P's strength, that is the magnitude of A (the value
n(v-TL)2 is constant), Figure 1l is a graph of that survival

function versus P's probability of success,

lrime-late is a summand of many factors in the command and .
control problem as well as the missle flight time. For the
purpose used here it is sufficient to treat time-late in
total and not consider its decomposition.

2If E knows the time at which an attack is 1n1t1dted then
the problem is trivial.
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Unfortunately the specific set of rules for E to maneuver
- by to achieve the survivability depicted in Fig. 1 is not

known. - | X
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IX. BACKGROUND

A. DISCRETE EVASIVE GAMES
It was felt that a two dimensional continuous game was

too difficult to solve, So the approéch was to solve a

similar but easier game. It was assumed that the ocean was

a linear set of discrete points and that E's mobility con-

sisted of being able to jump either right or left to an

adjacent point [Refs. 2 and 3]. Time-late became an integer

number of jumps that E could make between the attack de-
cision and warhead detonation. As in the exact problem E
had no knowledge of the decision to attack.

Discrete problems of this type are called evasive games
and are classified by the number of jumps constituting time-~
late. A one step discrete evasive game means E can move
either left or right one jump prior to detonation. Game
theory provides an immediate solution to that game; the

value is py=0.5. Also there is an optimal strategy for E

in that game. At each jump E should go left with probability

one~-half or right with probability one-half. Employment of

such a rule for each jump guarantees E a survival prokability

of at least the game value, regardless of P's firing rule,
Having easily solved the one step game interest was
focused on the two step game. In this game E was allowed
two jumps during time-late. The solution has been obtained,
but it was not as easy to achieve as that of the one step

gane (Ref,2}.
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The direction of the analysis was clear. Knowledge
'gained from solving the more simple games would be a step-
ping stonhe to the solution of the more difficult gémes.
EventualLy the assumptions of linearity énd discreteness
could be relaxed, Progress, however, in solving the dis-
crete games has been very slow, Researchers are presently

embroiled in solving the three step game.

B. A CONTINUOUS EVASIVE GAME

Washburn in Ref. 1l presented a different approach to

analyzing the ICBM versus aircraft carrier problem. He de-
’veloped the probability density function of a particle
moving continuously in a two dimensional medium subject to
a specific set of maneuvering rules. That approach was
distinct from previous work because it addressed the exact
problem., The results presented in this paper are an ex-
tension of that approach.

Washburn proposed the following strategy for E and
analyzed the evader's subsequent survivability, first as a
function of the attacker's strength and secondly as a
function of a specific strategy parameter. E was to select
courses from a uniform distribution. Course changes were
to occur as a Poisson process. This meant the time between
course changes would be exponentially distributed.

The exponential time between course changes has an
intuitive appeal hecause of the memoryless property of that
distribution. The memoryless property is: the probability

that E will not change course in the future, given that he

8
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has not changed course for some observation period, is in-
dependent of the length of that pericd. Therefore, use of
the exponential time distribution should serve to confound &

prediction of future position by extrapolation, regardless

) ] - of the course distribuﬁion used. For example, supbose P's

‘ - attack decision rule required that he observe E maintain a
constant course for at least five hours prior to Iaitiating
an attack. Such a procedure would not-improve P's proh-~
ability of a kill because the only information of any benefit
at the time an attack is initiated is E's position and last
course.

Figure 2 is a graph of the evader's maximum attainable
survivability when using the strategy of uniform courses
and exponential times versus P's strength for the optimal
exponential parameter, A.3 For comparison the upper bound
on survivability is also presented.

"If we assume the parameters A,v,TL are known to both
sides, then the evader can select A to maximize the surx-
vivability. The evader will clearly be in trouble if he
makes A too small, because the kill probability is at least
exp(-A-TL).4 On the other hand making course changes too

_; ' frequently will lead to a density function that is highly

peaked at the origin, which is equally undersirable..."

(Ref. 1].

Ommgmadra—"

' ) 3The exponential parameter, A, is the inverse of the mean
time between course changes.

4Exp(-l-TL) is the probability that E will make no course
change during TL,

. Alak i T Uy A
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IXY, RESULTS 07" SIMULATING THE CONTINUOUS EVASIVE GAME

The goal of this research was ts determine if the uni-
form course ruie was optimal within the class of Poisson
strategies or to fin& a better rule if it was not. For\
another rule to be better than the uniform one it would
have to enable E to attain a higher'sﬁrvivability than that
shown in Fig. 2. .

The methodology of solviny discrete games had not ad-~
vanced sufficiently to achieve those goals. VThe methods
used by Washburn wéie also not quitabie because of the
mathematical difficulty of the problem. ‘\:

The Poisson class of strategies is, however, uniquely
suited for analysis by computér simulation. This is due to
the memoryless property of the exponential times between
course changes. The results of such a simulation are pre-

"gented in this paper in the form of impfoved survivabil}ty
for the evader. |

Five course change rules were evaluateq in the simula-
tion, Theiproﬁability density function of‘each is pre-
sented on subsequent\pages along with a graph of the re;
sulting attacker's px versus attacker strengtﬂ, denoted as
S=A/1r(v-'I‘L)2.5 These graphs are for representative vélues
of the parameter a. Alpha, a, is the product of time-late
ana the :exponential parameter A.

Scourse changes were assumed to be independent of the
uwnderlying Poisson process,

‘[
i
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The simulation established a new lower bound on the py
the evader could yield to the attacker. Figure 3 is a graph
. illustrating the improvement of the new bound over that

found by Washburn, This new bound is the least lower bound

of all the p, §ersus S curves for the four values of a and

-al} rules simulated. Examples of such curves are shown in

Figs. 5-9., The old bound in Fig. 3 is the lower bound of
the pyp curves simulated using the unifotm rule exclusively.
The minimal Py as a function of a, over the five rules,

is shown in Fig. 4 for three specific attacker strength

levels, The curves in Fig. 4 confirm the statement in Ref, |f
'i 2 that the evader should turn most often, that is a should
be highest, against the weakest opponent.

Comparisons of the pyp curves of the different rules
havé-shown'that the wniform rule is not optimal for all
attacker strengths and o values. For example, the reverse
course rule (see Fig., 7) was shown to be better than the
uniform rule for a=l, The difference between these two
rules is illustrated in Fig. 10. Against a weak opponent
(strength £.6) the evader would do better to use the re-
verse course rule rather than the uniform rule for a=l.
This improved survivability occurs because the reverse
course rule created a "flatter" evader position density.

None of the five course rules evaluated produced a con-

-

sistently smaller p, for all values of attacker strengths
and a. However, the left-right rule was dominated by the

other four in all cases. Each of the five course rules was

12 .
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simulated at six different levels of a by varying ET. The

graphs of p, versus A/n(v-TL)2 for each simulation are pre-
’ . sented in the Computer Output section along with tabulated

px‘'s for specific attacker strength levels as a function

of the course rule and the o used,
: Py
1.09
- 1 ! 0.8“
* 0.6-
OLD BOUND
NEW BOUND
.' 0,4+
2 0.2- .
g
é.
. !
L] L L) 1] L E‘
’ - 0.2 0.4 0.6 0.8 1.0 i
F,

New Bound on p, That the Evader Can Yield
as a Function of Attacker Strength

g g

FIGURE 3
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IV. SIMULATION MODEL

Let E's position at time t be at X=0, ¥=0 of a cartesian
' coordinate system. Then rotate the axis until the positive .
. ) abscissa is aligned on and pointing in E's last direction
] of travel. Then regardless of the course rule used by E
5 there is at least exp(=-a) probability that he will be at
XeveTL, Y=0 at time t+TL, This is the probability that E j
does not change course during TL., So the attacker's prob-
ability of killing E by centering a small portion of his %
leﬁhal area at (v+TL,0) is exp(-a). Then add to exp(=a)
g the integral of E's density function over that part of the

uncertainty circle where the rest of the lethal area is

P,

targeted to determine the total Pk The total amount of
lethal area allocated in thié manner is the numerator, A,
% of the attacker's strength function s. ¢
. A computér program to simulate the above computation
i was written in FORTRAN and run cn the IBM 360. The program
;, consisted of two phases, first the play of a strategy and

secondly the scoring of that play.

A, SIMULATION OF A STRATEGY

To create a single play the evader's track was simulated

R B N i o sk S

from an initial position at time t to the resultant position

S

at t+TL, The track was the result of a specific maneuvering I
strategy being simulated. A strategy was made up of two

decision rules. The first rule determined the times be- {

tween course changes which were exponential random variables

with mean ET=1/A. This rule was common throughout all of




the simulations, although the parameter ET was a variable,
The second rule determined the magnitude'of subsequent

course changes. The only other kinematic restricticn was

a constant speed, v, for the evader.
To gtart a play datum was initialized by setting t=0,
-X(d)éo, Y(0)=0 and an initial course, ¢, was selected from

.the uniform distrikution. Then a sequence of exponential

Pl - oL

6 .
times [ti]i=l,N(TL) were generated and a sequence of course
nges Cs were generated using the course
cha g ’ [ l]i=2,N(TL) ! g g
change rule, The evader's position at t=TL was
i N-1

X(TL) = 2 vet;*(Cos(cy)=Cos(cy)) + veTLeCos(c
it i=l

W L.l

e : N"l
o Y(TL) = ) v-ti-(Sin(ci)~Sin(cN)) + v+TL<Sin(cy) 1.2
i=1
B. SCORING THE PLAY

Once E's position at t=TL was determined that observa-

tion was scored. To score a play the coordinates of E's

éf position, X(TL), ¥Y(TL), had to be transformed. The purpose

‘ of the transformation was to make the observed position in-

dependent of the particular initial cource ¢,. The trans-

-
A

formation was a rotation of the coordinate axis about the

datum so the positive abscissa would be aligned in the

] . direction cf the initial course. The transformed position
/27 was:
6

The number of elements of this sequence, N(TL), is a
Poisson random variable.

22




X' (TL) = x(TL)Cos(cl) + Y(TL)Sin(cl) 2,1

Y' (TL) = Y(TL)Cos(cl) -~ X(TL)Sin(cl) 2.2
An example of this transformation is shown in Fig. 11.

If E had not made a course change during TL then his
transformed position would have been

X' (TL) = veTL ' 3.1

Y' (TL) 0 3.2
A grid system of square cells’ was placed over the

playing area of Fig. 1l1B and a determination was made as to

Y ' ,
Y X
‘ -
» K
RADIUS = v+TL
ORIGIN: Datum ° ORIGIN: Datum
B: X(TL), Y(TL) B: X'(TL), Y'(TL)
Clz Initial Course A: (veTL,0)
SAMPLE PLAY PRIOR 'SAMPLE PLAY AFTER
TO TRANSFORMATION _ "~ THE TRANSFORMATION
FIGURE 11A " PFIGURE 11B

which cell X'(TL), Y'(TL) was in. Each cell of the grid
had an associated value which would represent the number of

times a play resulted in an observation in that cell, wWhen

A e et gty

JThe cumulative cell area was normalized by the facter
T(veTL) 2,

23
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'
the appropriate cell was determined, fos the play being
scored that value was incremented by one. |
A simulation ruin was composed of 16810 plays and acoring
iterations for # strategy ulilizing a gpecific course chan&e
.xrule, The inbut variables for a run, besideé the course
Jrule were v, TL and ET. At the end of a simulation run the
-grid syséem was a - two ?1mens;onal histogram of E's pletzon.
The trequenc1es in the histogram were then ordered, accumu-
lated and normalized to achieve cumulative cell probabilities.
\ The ordering corresponded éo the conservative assumption that
P could divide his lethal area and target ornly those cells
with the higher\probabhlities. These probabilities were
then plotted agginst the cumlative cell area they repre-
‘ \ .se ted.8 ?his graph was labeled Px versus attacker strengtﬁ
- and was the primary output of th? program.‘
Thirty simulation runs were ﬁade to invgstigate five
\different course change rules and six different values of
ET. For all runs the following constant values were main-
tained, v¥5 knots and TL=2 hours. The graphs from those .
runs Sre included in the Computer Output section. Each -
course change rule was simulated many different times; the
only difference between runs being the pseudo random num-

ber generator seeds.  This was done to check for the vari-

ab;llty of the Pk grawh for that rule. 1In all such runs

8
The amount of area in a cell was denoted as cell size and
equal to'(2*TL/41)2. TL and v were held constant there-
fore cell size was always approximately 1/4 nm2,
. {
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the resultant graphs were so'similar that any diffexénce
|

was not distinguishable. For simulation run reqwirad.two

minutes and forty-five seconds using 125 K on the IBM 360.
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V. CONCLUSION

It was determined that the uniform course change rule

is not optimal within the Poisson class of strategies. Com-

parison of various rules, see Fig. 10, showed that under
certain conditions a single rule such as the reverse course
change rule is better. Also the new lower bound on py,
taken over all rules and values of a simuiated, is an im-
provement on the lower bound achieved frcm only the uniform
rule.

Certainly not all the possible course change rules were
simulated. The rules evaluated, however, were representa-
tive of the broad class of possible rules. When compared
to the uniform rule, all but one <f Lhe other rules showed
that E could improve his situation if he knew P's strength
by selecting the better rule for that encounter. The one
rule that was consistently dominated was the left-right
rule.,

It remains unknown whether or not the optimal strategy

is a Poisson strategy.
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. - START

[3x -~ 55555

L

[ v--s5.0 |

['T'L';-Lz'.'o‘l

ET ~- 1.0

PP (s1,41)
Pp(i’j) -~ 0
for ali 1,]

v

APPENDIX A
FLOW DIAGRAM

---ipseudo-random number seed, an input wariable |

---jevader speed in knots |

-—-:cime-late in hours :]

---!mean time between course changes, an input
tvariable

---:playing area and histogram; each cell is
ta square with dimension (2%xV*TL) /41

INDEX(41,41)
INDEX(1,3J) -~ O
for all 1,4

---1INDEX is a book-keeping record of PP cell

1§easibility

JINDEX(1,3) -- O

Yes 15 PP(1,]) an exterior cell |

k. e
[INDEX(L,1) ~- 1j=2{Ts PP(i,}) an interior cell |

L -
INDEX(4,3) -- 2

X == 0'0
y -~ 0-0
Clock -~ 0.0
c -- 0.0

frR -- TL-Clock |__——--o@
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N @——JGeneratlchU(O,Z )

1 - Theta -= ¢
'!"' o IE'"'C*‘ le—v

3 I E;_Enerate twExp(1/ET)
b : Generate a course I

change ¢ by the -
rule being sim- AT _min(TR,t)]

lated 4
Clock =~ Clock + t

)

x == x + (V*TL)*Cos(c)
y == y + (VATLY*S1u(c)

‘P

{TR -~ TL-Clock F Mo lis_Clock = T ]

[re

X == x*Cos(Theta)+y*Sin(Theta)
y ~-- y*Cos(Theta)=-x*Sin(Theta)

: —

Determine which column of PP the x co-
ordinate is in, eigiicolumn 1

v

Determine which row of PP the y coordi-

Lpate is in, e.g. row m

{PP(m,1) - PP(m,1) +1 |

]
L Sort and order PP_1

| Sum PP 1 “ 

. Graph: P, versus attacker strength,
STOP \ i.e. py versus normalized lethal area
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Subroutine Trktm(ET,r,t)

ey

t —— =ET*1n(r)]

‘Return

Main

[ghbroutine Corse(r,clj

4

PL —- 3.1415 |

f -- 2*Pi

b -~ §

delta ¢ = r*(b-a) + ¢

b

¢ -~ ¢ + delta ¢

¢ === c,Mod(f)

&

Return

¥

Main

Subroutine Tcorse(r,c)

1

g -- 0.2




(: )-—————h'l’i -~ 3.1415
i

£ - 24p1 |
Nol J

Is r between 0 and 0.25 inclusive

Toe

a-- g/2 ' _ |

i

b -~ 1/(2*%Pi) - s*Pi/4

:

d —— -r
[e -~ (b**2)-t%axd | | 3
delta ¢ -~ (~b+Sqrt(e)’/(2"a) | j

Is r greater than 0.25 and less than or
@(——_——‘equal to 0.5

Ko l Yes
a == -s/2 -]
i

[b —- 1/(2%p1) + 3%s*pi/4 | 55

!

d == (=s*(Pi%*2)/4) - ¢

!

e ~= (bW*2) = 4kakd
A
delta ¢ ~- (=b + Sqrt(e))/(2*a) ""“"’@

Ly
e 1




et s, il

x -
No I8 r greater than 0.5 and less than or ' ?
. equal to 0.75 ’

l Yes '
rprime —-- r - 0.5] ‘
4
b == 1/(2%P1) - s*P1/4 P
: [
g | * )
i * d =- -rprime .
! B
e —— (b%*2) ~ 4ra*d b
B I E
i E -
§ delta ¢ -- (~b = Sqrt(e))/ (2%a) ! E
4 . [
3 delta ¢ -- delta ¢ + Pi 4(:) '! :
P
] U3
——irprime -=- r~0.5 - ]
{ -
i a -- -g/2 ) P

3] b -= 1/(2%P1) + 3¥s*Pi/4 5 :

|
: . d -- (-s*(Pit*2)/4) - rprime i ;
¢ L
5 e —— (b¥*%2) - 4kaxd ; 1
delta ¢ -- (-b + Sqrt(e))/(z*a)f 1

. delta ¢ -- delta ¢ + P{ \\ )@
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i

c =--c +.delta c J

4

¢ == ¢,Mod(f)

Return

Msin

Subroutine Pcorse(r,c)

I

PL -- 3.1415

f -- 2+P4

8 == 1/(Pi**2)

JLA— No

Is r greater than 0.5

a == g/2

Yes

—~

4 = -8/2

delta ¢ -- Sqgrt(a)

b -- 1/(2%Pi) + 3%Pi*g/2

v

[; = -g¥(Pik*2) - ¢ ]

!

e -- (b**2) - Lkakd

¥

delta ¢q == (-b+Sqrt(e))/(2*a)

)

delta c, == (~b=-Sqrt(e))/(2*a)




b %
Is Pi less than delta cj and is
E.flu ¢1 less than or equal to f | Yes

=

délta ¢ -- delta c; delta ¢ == delta cy
!I,. .
E -- ¢ + delta ¢
X
¢ == c,Mod(f)

1 Return

Main |

Subroutine Trners(r,c)

R

Pi -~ 3.1415

f - 2%P1

a -- Pi/6
v

b —- 11*Pi/é6

delta ¢ -- r*(b-a) + a

¥

¢ -- ¢ + delta c
¥

¢ -~ ¢,Mod(f)

Return ‘| Main
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Subroutine chofs(r,c)

v

Pi -- 3,1415

!

£ -- 2*Pi

l

No

c--c+1=1/2|"—'——

|Is r greater than 0.5

Yes

¢ -~ ¢ + 3*%Pi/2

o

s

C —= C,Mod(f)

—

Return

¥

Main
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COMPUTER OUTPUT

- TL/ET
Rule 1,0 2,0 3,0 4.0
Uniform " 729 .580 501 486
Modified 737 .580 .501 486
Left-Right
Reverse .690 572 .548 . 564
Course
Left-Right ,917 .768 .650 .588
Truncated .697 .556 .509 .517
Uniform .
column .690 556 .501 486
nininum
Py for attacker strength equal 6.2
Table 1
TL/ET
Rule 1.0 2.0 3.0 4.0
Uniform .854 784 752 , 760
Modified .878 . 784 752 .768
Left-Right ’
Reverse .838 .791 . 799 .831
Course
Truncated {846 .768 .768 .815
Uniform
minimum '

e et

pi for attacker strength equal 0.4

—s T

Table II
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‘f —
l. [l
TL/ET
Rule 1.0 2.0 3.0 4.0 t
Uniform .933 - ,909 .901 .917 :
. 4
Modified .948 .909 .901 .917 : 1
Left-Right 1
r Reversge +933 .917 .925 .948 \
i _Gourse .
N Left-Right .987 .987 . 980 .987
g Truncated .933 .909 . 909 .933
Uniform
column .933 .909 o .901 .917
minimum

py for attacker strength equal 0.6

Table II1
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COMPUTER PROGRAM

A SIMULATION OF THE CONTINUOUS EVASIVE

GAME FOR THE POISSON CLASS OF STRATEGIES
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